Math 121 Homework Assignment \#1

Spring 2007
Due Friday April 13

From your textbook:
Page 8 \# 7,8,11

Page 12-13 \#7

Also:

1. Show that the completion of \mathbb{Q} in the sense of problem 7 (on page 12 -13) is \mathbb{R}.
2. Show that the irrational numbers in \mathbb{R} are not a countable union of closed sets.

Deduce that the rational numbers are not a countable intersection of open sets.
3. A condensation point of a set S in a metric space X is (by definition) a point p such that, for each $\varepsilon>0, S \cap B(p, \varepsilon)$ is uncountable (uncountably infinite).

Prove: If S is an uncountable set in \mathbb{R} (or more generally in $\mathbb{R}^{\mathbf{n}}$) then there exists a condensation point for S.

Suggestion: $\mathbb{R}=\bigcup_{-\infty}^{\infty}[n, n+1]$, so there is some interval $[n, n+1]$ such that $[\mathrm{n}, \mathrm{n}+1] \cap \mathrm{S}$ is uncountable. Hence, either $[\mathrm{n}, \mathrm{n}+1 / 2] \cap S$ or $[\mathrm{n}+1 / 2, \mathrm{n}+1] \cap S$ is uncountable. Continue to find sequence of "nested" intervals of length $\frac{1}{2^{k}}$, $\mathrm{k}=1,2,3 \ldots$ each of which has an uncountable intersection with S .

